3.6: Zeros of Polynomial Functions

Theorems and Rules for Finding Roots

- Fundamental Theorem of Algebra: a polynomial function with degree greater than 0 has at least one complex zero. (Note that real numbers are subsets of complex numbers.)
- Linear and Quadratic Factors Theorem: Every polynomial with real coefficients can be factored into a product of linear and irreducible quadratic factors with real coefficients.
- Conjugate Zeros Theorem: If a polynomial P has real coefficients and if the complex number z is a zero of P, then the complex conjugate \bar{z} is also a zero of P.
- Linear Factorization Theorem: Allowing for multiplicities, a polynomial function will have the same number of factors as its degree, and each factor will be in the form $(x-c)$, where c is a complex number
- Factor Theorem: $x-k$ is a factor of a polynomial P if and only if $P(k)=0$.
- Remainder Theorem: If polynomial $P(x)$ is divided by $x-k$, then the remainder is the value $P(k)$.
- Rational Zero Theorem: If the polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ has integer coefficients, then every possible rational zero of P is of the form: $\frac{p}{q}$ where : p is a factor of the constant coefficient a_{0} and q is a factor of the leading coefficient, a_{n}.
- Descartes' Rule of Signs: a rule that determines the maximum possible numbers of positive and negative real zeros based on the number of sign changes of $P(x)$ and $P(-x)$.

Let P be a polynomial with real coefficients.
(1) The number of positive real zeros of $P(x)$ is either equal to the number of changes in sign in $P(x)$ or less than that by an even whole number.
(2) The number of negative real zeros of $P(x)$ is equal to the number of changes in sign of $P(-x)$ or less than that by an even whole number.

Watch this example: https://mediahub.ku.edu/media/t/1_3ko6ffj7.

1. Find a polynomial of degree 4 , with integer valued coefficients, whose roots include $3,-3,2-i$.
2. Find the remainder of dividing $x^{5002}+x^{304}+5$ by $x+1$.
3. List all possible rational zeros of $P(x)=5 x^{5}-18 x^{4}-6 x^{3}+91 x^{2}-60 x+9$ given by the Rational Zeros Theorem.
4. Use all theorems to find all rational roots of $P(x)=x^{6}-5 x^{5}+8 x^{4}-3 x^{3}-7 x+6$.

Hint: (A) List all possible rational zeros. Try to reduce the number of possibilities by any theorem. (B) Plug each number you listed in (A) in $P(x)$ to check if it is a zero.
5. Let $p(x)=x^{4}+2 x^{3}+x^{2}+12 x+20$
(a) List all of the rational numbers that could be zeros of $p(x)$ according to the rational zeros theorem. Then use the Factor or the Remainder theorem to find at least one rational zero.
(b) Use long division/synthetic division and the quadratic formula to find all of the zeros of $p(x)$. List the zeros along with their multiplicities.
(c) Write $p(x)$ in its fully factored form. (That is, all factors should be linear complex factors.)
6. (Optional) By Descartes' rule of signs, how many real zeros does $p(x)=5 x^{5}-18 x^{4}-6 x^{3}+91 x^{2}-60 x+9$ have?

Example Videos:

1. https://mediahub.ku.edu/media/t/l_3ko6ffj7
